Note on fractional Mellin transform and applications.

نویسندگان

  • Adem Kılıçman
  • Maryam Omran
چکیده

In this article, we define the fractional Mellin transform by using Riemann-Liouville fractional integral operator and Caputo fractional derivative of order [Formula: see text] and study some of their properties. Further, some properties are extended to fractional way for Mellin transform.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mellin transform and subodination laws in fractional diffusion processes

The Mellin transform is usually applied in probability theory to the product of independent random variables. In recent times the machinery of the Mellin transform has been adopted to describe the Lévy stable distributions, and more generally the probability distributions governed by generalized diffusion equations of fractional order in space and/or in time. In these cases the related stochast...

متن کامل

GENERAL SOLUTION OF ELASTICITY PROBLEMS IN TWO DIMENSIONAL POLAR COORDINATES USING MELLIN TRANSFORM

Abstract In this work, the Mellin transform method was used to obtain solutions for the stress field components in two dimensional (2D) elasticity problems in terms of plane polar coordinates. the Mellin transformation was applied to the biharmonic stress compatibility equation expressed in terms of the Airy stress potential function, and the boundary value problem transformed to an algebraic  ...

متن کامل

Applications of Integral Transforms in Fractional Diffusion Processes

The fundamental solution (Green function) for the Cauchy problem of the space-time fractional diffusion equation is investigated with respect to its scaling and similarity properties, starting from its Fourier-Laplace representation. Then, by using the Mellin transform, a general representation of the Green function in terms of Mellin-Barnes integrals in the complex plane is derived. This allow...

متن کامل

Mellin Convolution for Signal Filtering and Its Application to the Gaussianization of Lévy Noise

Noises are usually assumed to be Gaussian so that many existing signal processing techniques can be applied with no worry. However, in many real world natural or man-made systems, noises are usually heavy-tailed. It is increasingly desirable to address the problem of finding an opportune filter function for a given input noise in order to generate a desired output noise. By filtering theory, th...

متن کامل

Integral representations for the Dirichlet L-functions and their expansions in Meixner-Pollaczek polynomials and rising factorials

In this article we provide integral representations for the Dirichlet beta and Riemann zeta functions, which are obtained by combining Mellin transform with the fractional Fourier transform. As an application of these integral formulas we derive tractable expansions of these L-functions in the series of Meixner-Pollaczek polynomials and rising factorials.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SpringerPlus

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016